

CCC CHAIN MATERIALS

For more detailed material information, see page EM - MF - 8 or the Appendix located at the end of this manual.

Rexnord has developed a variety of chain materials for various and unique applications.

Special materials vary per chain series; see product catalog to determine standard versus special materials.

AC (Armour Clad)

- Austenitic stainless steel cladding available with a variety of plastic link materials
- Excellent for conveying raw castings, rough parts, etc.

AS (Anti-Static)

- An electrically conductive acetal formulated to reduce or eliminate nuisance static charge
- ➡ ALWAYS contact Rexnord Application Engineering for assistance

BWR (Black Wear Resistant)

- ⇒ Specially formulated nylon composite with excellent wear characteristics
- ⇒ BWR may extend chain life up to 5 times in comparison to other plastic materials in abrasive applications (i.e. sand, glass, conveying machined steel, castings, etc.)
- ⇒ Not intended for wet applications due to expansion

CR (Extreme Chemical Resistant)

Fluorinated polymer which is chemically resistant to high concentrations of oxidizing agents, acids and bases

D & WD (Acetal)

 \Rightarrow Plain acetal available in gray and white

DUV (Ultraviolet Resistant)

- ⇒ Specially formulated acetal
- ⇒ Used for outdoor applications with direct exposure to the sun or UV radiation

ESD (Electrostatic Dissipative)

- Polypropylene formulated for conveying sensitive products such as electronics and computer chips where controlling static charge or static decay is critical
- ⇒ ALWAYS contact Rexnord Application Engineering for assistance

FR (Flame Retardant)

⇒ Flame retardant polyester that meets the requirements of UL Standard 94 V-0 rated combustion

HP[™] & WHP (High Performance)

- Patented blend of acetal specifically formulated for dry running conveyors due to excellent friction characteristics
- ⇒ Available in dark gray and white

LF & WLF (Low Friction)

- Patented blend of acetal provides good wear resistance and long service life due to the low coefficient of friction
- ⇒ Available in tan and white

MR (Melt Resistant)

A nylon material with a high melting point used to prevent hot objects (product temperature up to 375° F (190° C)) from melting the top of the chain

P (Chemical Resistant)

A polyester formulated to reduce or eliminate material degradation in applications where questionable chemicals such as chlorine and phosphorous are present

WSM & BSM (Special Material)

- Tough acetal material formulated for abrasive and impact loading applications
- Cut resistant material commonly used in the meat processing industry on cutting, boning and trimming lines
- ⇒ Available in white and black
- Since materials vary in strength, refer to the product catalog for specific chain / material strengths when changing out materials.

Multiflex Conveyor Chain Materials

- > AC (Armour Clad)
- > AS (Anti-Static)
- > BWR (Black Wear Resistant)
- > CR (Extreme Chemical Resistant)
- > D & WD (Acetal)
- > DUV (Ultraviolet)
- > ESD (Electrostatic Dissipative)
- > FR (Flame Retardant)
- > HP[™] & WHP (High Performance)
- > LF & WLF (Low Friction)
- > MR (Melt Resistant)
- > P (Chemical Resistant)
- > WSM & BSM (Special Material)

Regulatory Information:

Rexnord, Rex, TableTop, MatTop and HP are trademarks of Rexnord Industries, Inc.

All rights Reserved.

Multiflex Friction Factors

FRICTION TABLE BETWEEN CHAIN AND PRODUCT (Fm)

 Friction Table Between Chain and Product (Fm)

		Friction Fact	ors Betwe	en Chain A	And Products	(Fm)		
Chain	Material				Product Mate	erial		
Chain Material	Lubrication	Plastic	Paper	Steel	Aluminum	Glass	Returnable	Non-Returnable
	Condition	(including PET)					Glass Bottles	Glass Bottles
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
AS	Water	0.20	NR	0.22	0.17	0.15	0.18	0.15
-	Soap & Water	0.15	NR	0.15	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
CR	Water	0.20	NR	0.22	0.17	0.15	0.18	0.15
	Soap & Water	0.15	NR	0.15	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
D. WD	Water	0.20	NR	0.22	0.17	0.15	0.18	0.15
,	Soap & Water	0.15	NR	0.15	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.30	0.35	0.35	0.28	0.22	0.29	0.22
ESD	Water	0.25	NR	0.25	0.19	0.17	0.21	0.17
	Soap & Water	0.20	NR	0.20	0.16	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
FR	Water	0.20	NR	0.22	0.17	0.15	0.18	0.15
	Soap & Water	0.15	NR	0.15	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.18	0.23	0.18	0.18	0.13	0.16	0.12
нр™ ₩нр	Water	0.16	NR	0.16	0.14	0.12	0.16	0.11
11F , VV 11F	Soap & Water	0.14	NR	0.13	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.20	0.30	0.25	0.20	0.15	0.20	0.15
	Water	0.18	NR	0.20	0.15	0.13	0.16	0.13
LI, VV LI	Soap & Water	0.15	NR	0.15	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
MP	Water	NR	NR	NR	NR	NR	NR	NR
IVITX	Soap & Water	NR	NR	NR	NR	NR	NR	NR
	Oil	NR	NR	0.10	NR	NR	NR	NR
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
WSM BSM	Water	0.20	NR	0.22	0.17	0.15	0.18	0.15
WOW, DOW	Soap & Water	0.15	NR	0.15	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
Р	Water	0.20	NR	0.22	0.17	0.15	0.18	0.15
F	Soap & Water	0.15	NR	0.15	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
DUN	Water	0.20	NR	0.22	0.17	0.15	0.18	0.15
DUV	Soap & Water	0.15	NR	0.15	0.12	0.10	0.14	0.10
	Oil	-	NR	0.10	-	-	-	-
	Dry	0.25	0.33	0.30	0.25	0.20	0.27	0.20
DWD	Water	NR	NR	NR	NR	NR	NR	NR
BWR	Soap & Water	NR	NR	NR	NR	NR	NR	NR
	Oil	NR	NR	0.10	NR	NR	NR	NR
	Drv	0.30	0.40	0.35	0.35	0.35	0.35	0.35
	Water	0.20	NR	0.25	0.25	0.25	0.25	0.25
AC	Soap & Water	0.10	NR	0.15	0.15	0.15	0.15	0.15
	Oil	_	NR	0.15	-	-	-	-
· · · · · · · · · · · · · · · · · · ·		1		0.10	I	I	ļ	

Regulatory Information: Rexnord, Rex, TableTop, MatTop and HP are trademarks of Rexnord Industries, Inc.

All rights Reserved.

NR denotes "not recommended"

Dash denotes "combination not tested"

All values shown in this table were obtained through product testing. Actual values may be higher or lower depending on environmental conditions.

CCC FRICTION TABLE BETWEEN CHAIN AND WEARSTRIPS (Fw)

	Friction Factors	Between Chain And	d Wearstrips (Fw)			
Chain M	Aaterial		Wearstrip Material			
Chain Material	Lubrication Condition	Steel and Stainless Steel	UHMWPE	Nylatron [®]		
	Dry	0.30	0.25	0.25		
24	Water	0.23	0.21	0.21		
A0	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	NR	NR	NR		
CR	Water	0.23	0.21	0.21		
UN	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	0.30	0.25	0.25		
ם אי ם	Water	0.23	0.21	0.21		
<i>D</i> , N <i>D</i>	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	0.30	0.25	0.25		
FSD	Water	0.23	0.21	0.21		
230	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	0.30	0.25	0.25		
ED	Water	0.23	0.21	0.21		
ГК	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	0.22	0.18	0.17		
	Water	0.20	0.16	0.16		
⊓ ₽ , ₩ Π Ρ	Soap & Water	0.15	0.14	0.14		
	Oil	0.10	0.10	0.10		
	Dry	0.25	0.20	0.20		
	Water	0.20	0.18	0.18		
LF, WVLF	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	0.30	0.25	0.25		
MD	Water	NR	NR	NR		
IVIR	Soap & Water	NR	NR	NR		
	Oil	0.10	0.10	0.10		
	Dry	0.30	0.25	0.25		
	Water	0.23	0.21	0.21		
	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	0.30	0.25	0.25		
Р	Water	0.23	0.21	0.21		
r	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	0.30	0.25	0.25		
DUV	Water	0.23	0.21	0.21		
DUV	Soap & Water	0.15	0.15	0.15		
	Oil	0.10	0.10	0.10		
	Dry	0.30	0.25	0.25		
RM/P	Water	NR	NR	NR		
DWK	Soap & Water	NR	NR	NR		
	Oil	0.10	0.10	0.10		

Multiflex Friction Factors

 Friction Table Between Chain and Wearstrips (Fw)

Regulatory Information:

Rexnord, Rex, TableTop, MatTop and HP are trademarks of Rexnord Industries, Inc.

Nylatron is a registered trademark of Quadrant Engineering Plastics Products.

All rights Reserved.

Rex[®] Multiflex Chains

NR denotes "not recommended"

Friction between chain and wearstrip (Fw) must be adjusted when inclining / declining. See Friction Formulas on page EM - MF - 27 for more information.

All values shown in this table were obtained through product testing. Actual values may be higher or lower depending on environmental conditions. Multiflex Sprocket and Idler Wheel Designations

Plastic

- > Acetal
- > LF Acetal
- > KU and KUS (Machined Plastic)

Metallic

> Semi-Steel (Cast Iron)

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

CCC SPROCKET AND IDLER WHEEL DESIGNATIONS

Rexnord has developed a variety of sprocket and idler materials for various and unique applications. Sprockets are available in injection molded plastic, machined plastic and metallic varieties.

Plastic

- ⇒ Acetal
 - Good corrosion and wear resistant properties
 - One piece sprocket
 - Temperature Range: -40° to +180° F (-40° to + 82° C)

⇒ LF Acetal

- Available in select idler wheel styles only
- Self-lubricating
- Temperature Range: -40° to +180° F (-40° to + 82° C)

⇒ KU and KUS (Machined Plastic)

- KU and KUS do not designate material
- Sprockets machined in a variety of plastic materials
- · Flush side for ease in cleaning
- Sprockets come in a wide variety of pitch diameters and bore sizes

Metallic

⇒ Semi-Steel (Cast Iron)

- Used in non-corrosive, abrasive environments such as broken glass, metal chips, etc.
- One piece sprocket
- Temperature Range: -40 to +350° F (-40° to +177° C)

Sprocket strength does not have to be considered because it is not the critical element. Sprockets are designed to handle more load than the chain can exert. NOTES

Contact Rexnord Application Engineering for more information 1.262.376.4800

Rex[®] TableTop[®] and MatTop[®] Chain Engineering Manual

CCC WEARSTRIP MATERIALS

Proper chain and wearstrip selection will provide optimum life. Since a function of the wearstrip is to lower friction and to reduce wear, it is recommended to give careful consideration when selecting the material.

The following general guidelines will help in selecting the proper material for your application:

Acetal

⇒ Not recommended for use with acetal chains; it is best not to run identical plastics together

Aluminum

⇒ NOT RECOMMENDED due to poor wear resistance

Bronze and Brass

- ⇒ Sometimes used with stainless steel chains
- ⇒ Typically used for non-sparking and anti-static conditions
- ⇒ For bronze recommended one half hard temper (Rb 58)
- ⇒ For brass recommended one half hard (Rb 70 Min) to full hard (Rb 82) temper

Nylatron[®] (Nylon with Molydisulfide Filler)

- ⇒ Recommended for dry applications due to low wear and low friction
- ⇒ Especially suited for dry operation on thermoplastic side-flexing chain corners due to its high PV (Pressure-Velocity) rating
- Typically not recommended in wet applications because it will absorb moisture and expand (if used in wet applications, allow clearance for expansion and movement of fasteners)

Lubricant Impregnated Wood

- ⇒ Commonly used in dry abrasive applications (i.e. glass, paper)
- \Rightarrow Not recommended in wet applications

Steel

- ⇒ Recommended for non-corrosive, abrasive or high temperature applications
- ⇒ Abrasive particles are less likely to imbed in metal wearstrips in comparison to plastic
- A cold rolled plain carbon steel is recommended
- ➡ Heat treated grades hardened to 25 to 30 Rc is recommended

Stainless Steel

- ⇒ Recommended for corrosive, abrasive or high temperature applications
- ⇒ Abrasive particles are less likely to imbed in metal wearstrips in comparison to plastic
- A cold rolled austenitic grade is recommended which offers the best corrosion resistant properties
- ⇒ Recommended one quarter hard temper (25 to 35 Rc)
- ⇒ Softer annealed grades of austenitic are NOT RECOMMENDED. Interaction between the chain material and the soft stainless steel might develop. When this happens, the resulting wear debris consists almost entirely of finely divided stainless steel particles, nearly black in color, similar to molydisulfide or graphite. The wear of the stainless steel might be rapid while the thermoplastic chain by contrast exhibits only slight wear.
- ⇒ Martensitic stainless steel can also be used when heat treated (25 to 35 Rc); however, it is not as corrosion resistant as austenitic
- ⇒ Hardness is more critical than grade for better wear resistance

Teflon®

⋗

⇒ Recommended only for very low speed - low load applications

UHMWPE (Ultra High Molecular Weight Polyethylene)

- Recommended for dry or wet applications on straight or side-flexing conveyors
- Not recommended for abrasive conditions where particles may imbed in the surface and wear the chain
- ⇒ Provide lower coefficient of friction than metals
- Not affected by moisture and more resistant to chemicals than nylon
- ➡ UHMWPE materials can be supplied with various fillers:
 - Ceramic / glass
 - · Conductive
 - Oil / wax

Wearstrip surface finish is a critical aspect for overall chain life. A surface finish of 32 to 63 μ -in Ra is recommended for metal wearstrips and 32 to 125 μ -in Ra for plastic wearstrips.

Multiflex Wearstrip Materials

- > Acetal
- > Aluminum
- Bronze and Brass
- > Nylatron[®] (Nylon with Molydisulfide Filler)
- Lubricant
 Impregnated
 Wood
- > Steel
- > Stainless Steel
- > Teflon®
- > UHMWPE (Ultra High Molecular Weight Polyethylene)

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

Nylatron is a registered trademark of Quadrant Engineering Plastics Products.

Teflon is a registered trademark of E.I. du Pont de Nemours and Company or its affiliates.

All rights Reserved.

Multiflex Lubrication

- > General Recommendations
- > General Types of Lubricants
- > Selective Lubrication

Regulatory Information:

Rexnord, Rex, TableTop, MatTop and HP are trademarks of Rexnord Industries, Inc.

Nylatron is a registered trademark of Quadrant Engineering Plastics Products.

All rights Reserved.

CCC LUBRICATION

Lubrication is recommended whenever the application permits. It not only reduces friction, thereby reducing chain tension; but also, greatly improves the wear life of the chain and wearstrips. Lubrication offers a constant cleaning effect of both chain and wearstrip and can also reduce static.

General Recommendations

- ⇒ Lubrication should contact both the chain and wearstrip
- ⇒ When lubricating Rex[®] Multiflex chains, the lubricant must be applied at the entrance of the inside corner track

General Types of Lubricants

- ⇒ Water Only utilize with corrosion resistant materials. Can be used as a general lubricant; however, it is not as effective as other types due to friction and cleanability properties.
- Water soluble lubricants and soaps Only utilize with corrosion resistant materials. These are excellent lubricants which also help clean the chain.
- Oil base lubricants These are vegetable, mineral oils or grease which offer high lubricity. Can be used with plastic or metal materials. Recommended to be used on all metal chains whenever practical. Food grade oils are available.

Selective Lubrication

In some applications, the presence of a lubricant cannot be tolerated. For these applications, it is recommended to utilize chains made of LF or HP[™] acetal material with Nylatron[®] corners, which offers the lowest coefficient of friction.

To eliminate or reduce lubrication, contact Rexnord Application Engineering to conduct a run dry survey.

For more information on lubrication types, compatibility, methods, etc., contact a lubricant manufacturer.

NOTES

ENVIRONMENTAL CONSIDERATIONS

Abrasive Applications

Applications with the presence of dirt, sand, glass or metal particles can lead to premature wear of the conveying chain and wearstrips.

Recommendations:

- ⇒ Utilize wearstrips and chains with a hard wear surface
- \Rightarrow If possible, use controls to minimize the amount of accumulation

Chemical Applications

Make sure any chemicals or cleaners used on conveyors are compatible with chain, wearstrip and sprockets. See table on page EM - MF - 9 for more detailed compatibility information.

Dry Applications

Considerations to be taken when running dry:

- Product backline pressure
- Conveyor cleanliness
- Conveyor pulsation
- Increased component wear

Extreme Temperature Applications

The recommended minimum and maximum operating temperatures for Rex[®] Multiflex chain and wearstrips can vary due to the presence of moisture.

	Minii	mum		Maxi	mum	
Motorial	Tempe	erature		Tempe	erature	
Watena	D	ry	D	ry	W	'et
	°F	°C	°F	°C	°F	°C
Acetal	-40	-40	180	82	150	66
UHWMPE	-100	-73	180	82	160	71
Nylon	-40	-40	170	77	150	66
Stainless Steel	-100	-73	800	427	250	121
Steel	-40	-40	350	177	250	121
Lubricated Impregnated Wood	-50	-46	160	71	160	71

High Speed Applications

In any high speed application, the critical aspect of the conveyor is the corners. The concern with running the chain at high speeds is the PV (Pressure-Velocity) in the corners. If the PV limits are exceeded, the chain or corner track may become damaged due to the heat generated from the high speed and/or load. It is generally recommended to utilize Nylatron® corner tracks in conjunction with HP™ or LF materials or selective lubrication for these applications.

Long Length Conveyors / Pulsation Applications

Pulsation or "slip stick" of chain results in a jerking chain motion which can occur in long, slow speed and dry conveyors. Pulsation can create product stability problems in extreme cases. It can also result in premature chain elongation or the chain jumping drive sprocket teeth. If corner discs are utilized, it is recommended that conveyor lengths do not exceed 150 ft (46 m) per drive, regardless of loading. Rexnord also recommends a 150° minimum wrap on the head sprocket. If necessary, this can be maintained with the use of a snubber roller.

Static Environment Applications

Under certain conditions, thermoplastic can acquire a static nuisance charge. Static charges are classified as:

Class 1: Static spark causes explosion stainless steel chains are recommended.

Class 2: Static spark is a nuisance charge low charge will provide slight shock or possible circuit damage.

Special thermoplastic materials could be considered.

All applications utilizing thermoplastic anti-static materials (i.e. AS, ESD) must be approved by Rexnord Application Engineering prior to quoting.

Grounding is crucial for the system to reduce static charges.

UV Applications

When conveyor chains are exposed to direct UV (Ultraviolet) or sunlight, DUV stabilized material should be utilized.

> Dry Applications

Multiflex

Environment

Considerations

> Extreme Temperature Applications

> Abrasive

> Chemical

Applications

Applications

- > High Speed Applications
- > Long Length Conveyors / Pulsation Applications
- > Static Environment Applications
- > UV Applications

Regulatory Information:

Rexnord, Rex, TableTop, MatTop and HP are trademarks of Rexnord Industries, Inc.

Nylatron is a registered trademark of Quadrant **Engineering Plastics** Products.

All rights Reserved.

Multiflex Material Characteristic Table

> Rex[®] Multiflex **Chain Material** Selection Table

Regulatory Information:

Rexnord, Rex, TableTop, MatTop and HP are trademarks of Rexnord Industries, Inc.

All rights Reserved.

CCC MATERIAL CHARACTERISTIC TABLE

Rex[®] Multiflex Chain Material Selection Table

Thermoplastic

	AC	HP™, WHP	LF, VLF	ο, Ο	BWR	AS	ESD	<u>с</u>	R MF		FR	BSM, WSM	
Impact Resistance	•				•	F	╞		•			•	
Wear Resistance	•	٠	•	•	•							•	
Chemical Resistance*	٠							•	•				
Strength	•	٠	•	•	•				•	•		•	
Low Frictional Characteristics		٠	•										
Capability to Run Dry in Corners		•	•	•	•					•		•	
Suitability in Wet Environment	•	•	•	•				•	•	•	•	•	
Low Temperature Capability (to -40 Deg. F)	•	٠	•	•	•			_	•	•			
High Temperature Capability (to +180 Deg. F)	٠	٠	•	•	•	•	•	•	•	•	٠		
Ultraviolet Capability	•							_		•			
Suitability for Class II (nuisance static)	٠				•	•	•						
Suitability for Class I (explosive static)	•							_					
Non-Magnetic Qualities	٠	•	•	•	•	•	•	•	•	•	•	•	
Flame Retardance	•								•		•		
Capability to Convey Hot Products (to +375 Deg. F)	٠								•				
FDA Approval	•	•	•	•				•	•				
-		-											

 Electrostatic Dissipative 	= Chemical Resistant	Extreme Chemical Resistant	= Melt Resistant	= Ultraviolet Resistant	= Flame Retardant	= Black Special Material	 White Special Material 	
ESD	₽	CR	MR	DUV	FR	BSM	WSM	
Armor Clad, Austenitic Stainless Steel	High Performance	White High Performance	Low Friction	White Low Friction	Acetal	White Acetal	Black Wear Resistant	Anti-Static
II	II	II	II	II	II	II	II	н
AC	MP™	МΗР	٤	WLF	۵	٨D	BWR	AS

See Corrosioin Resistance Guide on Page EM - MF - 9 For more details

CCC CORROSION RESISTANCE GUIDE

					Chemically		
			Nylon		Resistant		
	Austenitic		and		Fluorinated	Poly-	Poly-
Common or Chemical Name	Series	Acetal	Nylatron®	Polyester	Polymer	propylene	ethylene
	AC. SS	AS, D, WD, DUV,	BWR, MR	P, FR	CR	ESD	UHMWPE
Material Name	,	LF, WLF, HP [™] ,		,			
		BSM					
Acetic Acid (over 5%-up to 50%)	М	U	М	S	S	S	S
Acetone	S	S	S	S	U	S	S
Alcohol	S	S	S	S	S	S	S
Ammonia	S	U	S	S	S	S	S
Beer	S	S	S	S	S	S	S
Beverages-Soft Drinks	S	S	S	S	S	s	S
Benzene	S	S	S	S	S	М	М
Brine (pickle)	М	М	М	S	S	S	S
Carbon Tetrachloride	М	S	S	S	U	М	М
Chlorine	U	U	U	S	S	s	S
Citric Acid	S	М	М	S	S	S	S
Cyclohexane		S			S	U	U
Ethyl Chloride	S	S	S	S	S	М	М
Formaldehyde	S	S	S	S	М	S	S
Formic Acid	U	U	U	S	S	S	S
Fruit Juices	S	S	S	S	S	S	S
Gasoline	S	S	S	S	S	М	М
Hexane	S	S	-	S	S	S	U
Hydrochloric Acid (up to 2%)	U	U	U	S	S	S	S
Hydrochloric Acid (up to 37%)	U	U	U	S	S	М	S
Hydrogen Peroxide	S	U	U	S	S	S	S
lodine	U	U	U	U	М	М	М
Isopropanol (isopropyl alcohol)	S	S	S	S	S	S	S
Lactic Acid	S	S	М	S	М	S	S
Methylene Chloride	S	S		U	М	S	U
Milk	S	S	S	S	S	S	S
Muriatic Acid	U	U	U	S	S	М	S
Nitric Acid (low concentrations)	S	U	U	S	М	S	S
Oil (vegetable or mineral)	S	S	S	S	S	S	S
Paraffin	S	S	S	S	S	S	S
Phosphoric Acid (up to 10%)	S	U	U	S	S	S	S
Soap and Water	S	S	S	S	S	S	S
Sodium Chloride	М	S	S	S	S	S	S
Sodium Hydroxide (up to 25%)	S	S	U	U	М	S	S
Sodium Hypochlorite (Bleach)	U	U	U	S	S	S	S
Stearic Acid	S	M	S	S	S	S	S
Sulphuric Acid (up to 40%)	U	U	U	S	S	S	S
Toluene (Toluol)	S	M	S	S	М	S	U
Turpentine	S	S	S	S	S	S	U
Vegetable Juices	S	S	S	S	S	S	S
Vinegar	S	S	S	S	М	S	S
Water (fresh)	S	S	S	S	S	S	S
Whiskey	S	S	S	S	S	S	S
Wine	S	S	S	S	S	S	S
Xylene	S	S	S	S	S	U	M

Multiflex Corrosion Resistance Guide

> Corrosion Resistance Guide

Regulatory Information:

Rexnord, Rex, TableTop, MatTop and HP are trademarks of Rexnord Industries, Inc.

Nylatron is a registered trademark of Quadrant Engineering Plastics Products.

All rights Reserved.

Rex[®] Multiflex Chains

Dash = Not tested U = Unsatisfactory M = Marginal S = Satisfactory

General Rules of Thumb:

With thermoplastic products, do not use cleaning or lubricating agents with a pH below 4 or above 10.

This table is based on data available by suppliers of the various materials.

- > Straight Running Configuration
- > Side-flexing Configuration
- Straight Running and Side-flexing Configuration

CCC CONVEYOR DESIGN RECOMMENDATIONS

Straight Running Configuration

A long conveyor with a single drive is the simplest and most ideal design. Sometimes several short conveyors are required due to application constraints.

Side-flexing Configuration

In general, the straight section between the corner and the drive shaft must be at least 18 in (457 mm) to allow adequate room for the catenary (see page EM - MF - 22). The tail shaft should be at least 12 in (305 mm).

Depending on chain style, corner discs or corner tracks can be utilized.

Corner discs are used to guide the chain without significant increase in chain tension.

T	ail Shaft
Drive Shaft	Drive Shaft B
Preferred	<u>Avoid</u>

Straight Running and Side-flexing Configuration

- The conveyor frame is designed to support the chain on the bottom of the link
- ⇒ For applications where debris is a concern, an open design, such as a serpentine design, is preferred over full width support
- ⇒ The serpentine design prevents the build-up of debris in the track and distributes the wear evenly across the bottom of the link
- ⇒ Abrasive applications should utilize steel or stainless steel wearstrips
- ⇒ Wet abrasive applications should utilize stainless steel wearstrips and pins
- ▷ Non-abrasive conditions should utilize UHMWPE or Nylatron[®] wearstrips

1700, 1755, 1765 and 2550 chains MUST utilize corner discs.

Make sure that the entire chain path (carry, return, sprocket and catenary sag areas) has plenty of clearance for free chain travel. Make sure all frame and support members, piping, conduits and mounting hardware are well clear of chain path.

Contact Rexnord Application Engineering for more information 1.262.376.4800

Regulatory Information:

Rexnord, Rex, TableTop, MatTop and HP are trademarks of Rexnord Industries, Inc.

Nylatron is a registered trademark of Quadrant Engineering Plastics Products.

All rights Reserved.

Carry Ways

Guide clearance is critical for Rex[®] Multiflex chains. For guide clearance dimensions of individual chains, see table on page EM - MF - 15 or product catalog.

Side-flexing - Straight Edge Design (1702)

- ⇒ Chain can be lifted out of straight sections for cleaning or inspection
- \Rightarrow Longer conveyors can be achieved with the use of corner discs

- > Carry Ways
- > Side-flexing -Straight Edge Design (1702)

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

> Carry Ways

> Side-flexing -Bevel Design

CCC CONVEYOR DESIGN RECOMMENDATIONS

Carry Ways

Guide clearance is critical for Rex[®] Multiflex chains. For guide clearance dimensions of individual chains, see table on page EM - MF - 15 or product catalog.

Side-flexing - Bevel Design

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

 $\, \Rightarrow \,$ Chain can be lifted out of straight sections for cleaning or inspection

 \Rightarrow Longer conveyors can be achieved with the use of corner discs

1700, 1755, 1765 and 2550 chains MUST utilize corner discs.

Carry Ways

Guide clearance is critical for Rex[®] Multiflex chains. For guide clearance dimensions of individual chains, see table on page EM - MF - 15 or product catalog.

Side-flexing - TAB Design

- ⇒ Positive retention
- ⇒ TABs hold chain down in incline or decline applications
- \Rightarrow Chain top surface wear is decreased if the TAB return is utilized
- \Rightarrow Longer conveyors can be achieved with the use of corner discs
- \Rightarrow Once assembled, the TAB chain cannot be lifted out of the conveyor track

1700, 1755, 1765 and 2550 chains MUST utilize corner discs.

Center of Disc to Chain Center Outside Radius Outside Radius Mounting Plate Typical Construction - Corner Section

Utilizing Corner Disc

Multiflex Conveyor Design

> Carry Ways

> Side-flexing -TAB Design

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

Multiflex Side-flex Radius Table

> Side-flex Radius Table

CCC SIDE-FLEX RADIUS TABLE

SIDE-FLEX RADIUS TABLE

Chain Style	Chain	Width	Minimum Side	e-flex Radius
Chain Style	inches	mm	inches	mm
1700	2.17	55.1	5.75	146.1
AC 1700	2.17	55.1	5.75	146.1
1701	2.09	53.1	5.75	146.1
1701 TAB	2.09	53.1	5.75	146.1
AC 1701 TAB	2.09	53.1	5.75	146.1
1702	2.09	53.1	5.75	146.1
1755	1.09	27.7	5.38	136.5
1757 TAB	3.25	82.6	6.00	152.4
LBP 1757 TAB	3.25	82.6	6.00	152.4
1757 TAB G	3.25	82.6	8.00	203.2
1765	2.17	55.1	4.92	125.0
2500 TAB	2.63	66.8	9.50	241.3
2550 TAB	3.50	88.9	9.50	241.3

NOTES

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

2550T

LBP 1757T 1757T G

1755

1702

1700 AC 1700

2500T

AC 1701T 1701T

1701

Chain Style

1765

1757T

TAB 3.76

TAB 2.44 σ ×

A/A

Multiflex Guid
Clearance
Table

> Multiflex **Chain Track** Details

> Side-flexing

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

iils		
ack Deta		
Chain Tr		
Aultiflex (
2		

σ	
2	
×	
Ð	
T	
Φ	
σ	
- -	
S	

Contact Rexnord Application Engineering for more information 1.262.376.4800

Must Use Corner Disc

*

Corner Disc Must Use

Must Use Corner Disc

Corner Disc

တ်

<u>ن</u>

0.0

mm

Thickness

*

Must Use

0.75

0.63

0.63

inches mm

Corner Wearstrip

Corner

57.

4

59

Rexnord only offers corner discs for these chains; however, corner tracks can be utilized.

3.74 95.4

1.20

2.25

2.28

2.81

2.25

2.34

inches

Guide Clearance

S

30.

57.

58.

6

1.20 30.5

2.34 A/A

2.28 A/N

> 2.97 20.2

TAB

TAB 2.34 Q 59.

Bevel

2.19

inches

Guide Clearance Hold Down Style

55.6

E E

Straight

59.4

20

95.0

CCC CONVEYOR DESIGN RECOMMENDATIONS

- > Side Transfer
- > Inline Transfer

Transfers

Smooth transfer of the conveyed product from one chain to another is essential. The various methods are described below:

Side Transfer

- ✓ ⇒ Adjacent strands of chain should share a common wearstrip
 - ⇒ No stranded products

Inline Transfer

- \checkmark \Rightarrow Adjacent strands of chain should share a common wearstrip
 - ⇒ Allows product to remain in straight line
 - ⇒ No stranded products

These arrangements are used in an offset wrap drive, which allow a single strand of chain to be used; see page EM - TT - 21 (TableTop[®] Section) for offset wrap drive details.

Rexnord, Rex, TableTop and MatTop are

Alternate Drive Configurations

Alpine Conveyor

Rex[®] Multiflex chains have the ability to elevate or lower products in a very compact area. This figure shows a typical elevating system and how the chain is returned in a non-standard configuration.

- ⇒ Full return is not required
- ⇒ The chain hangs straight down from the drive sprocket and side-flexes back up into the tail section
- ⇒ Elevators can be designed with free-hanging (catenary sag) and sliding returns
- ⇒ Roller returns are not recommended
- \Rightarrow The straight and corner return sections can be the same as the carry section
- \Rightarrow The chain is run in the conveyor upside down through the return section
- ⇒ Depending on chain design, discs may have to be mounted upside-down in the return

Contact Rexnord Application Engineering for more information 1.262.376.4800

Multiflex Conveyor Design

Alternate Drive Configurations

> Alpine Conveyor

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

CCC CONVEYOR DESIGN RECOMMENDATIONS

> Return Ways -Serpentine Style Return

> Side-flexing -Straight Edge Design (1702)

Return Ways - Serpentine Style Return

A wide selection of chain returns are possible with Rex[®] Multiflex chains which offers considerable conveyor design freedom.

- ⇒ The chain is fully supported
- Allows for drainage and the passage of foreign materials

Side-flexing - Straight Edge Design (1702)

Typical Construction - Corner Section Utilizing Corner Track

- The corner disc in the return section is mounted in the same manner as in the carry section
- ⇒ Depending on chain design, discs may have to be mounted upside-down in the return

Contact Rexnord Application Engineering for more information 1.262.376.4800

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

Multiflex Conveyor Design

> Return Ways

Serpentine Style Return

Side-flexing -

Bevel Design

> Side-flexing -

TAB Design

>

Return Ways - Serpentine Style Return

Side-flexing - Bevel Design

- The corner disc in the return section is mounted in the same manner as in the carry section
- ⇒ Depending on chain design, discs may have to be mounted upside-down in the return

- mounted in the same manner as in the carry section
- ▷ Depending on chain design, discs may have to be mounted upside-down in the return

1700, 1755, 1765 and 2550 chains MUST utilize corner discs.

> Multiflex Incline Conveyors

CCC CONVEYOR DESIGN RECOMMENDATIONS

Multiflex Incline Conveyors

To assure proper functioning of these conveyors it is important that:

- ⇒ The chain enters and leaves the disc in the same plane as the disc
- ⇒ In the transition zone, the wearstrips should be curved to accomplish smooth transition from one plane to the next
- ⇒ The maximum angle of incline or decline for an application depends on product stability and friction between chain and product

- ⇒ The disc should be tipped so that it lies in the same plane as the chain exiting the disc

Regulatory Information: Rexnord, Rex, TableTop and MatTop are

and Matiop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

THIS

⇒ Any change in angle of chain travel should be made by down-flexing the chain as shown

Back-flexing through a change in angle will cause the chain to rise out of the conveyor frame

Multiflex Conveyor Design

> Multiflex

Decline Conveyors

Multiflex Decline Conveyors

To assure proper functioning of these conveyors it is important that:

- \Rightarrow The chain enters and leaves the disc in the same plane as the disc
- ⇒ In the transition zone, the wearstrips should be curved to accomplish smooth transition from one plane to the next
- ⇒ The maximum angle of incline or decline for an application depends on product stability and friction between chain and product

- ⇒ When declining, the chain must pass through a transition zone only after it has exited the disc
- ⇒ The disc should be tipped to lie in the same plane as the entering chain

⇒ Back-flexing through a change in angle cause the chain to rise out of the conveyor frame Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

CCC CONVEYOR DESIGN RECOMMENDATIONS

> Catenary Sag

Catenary Sag

- ⇒ The function of the catenary is to allow a place for excess chain to accumulate
- ⇒ Rex[®] Multiflex chains should never be run tight
- \Rightarrow The catenary sag should be measured when running
- ⇒ If catenary sag is excessive or increases due to wear, it should be adjusted by removing links to obtain the proper sag
- ⇒ Take-ups are typically not recommended
- \Rightarrow The catenary sag should be located as close to the drive as possible

The catenary sag area must be free of all obstructions, such as frame cross-members, supports, drive components, etc., that can damage the chain or inhibit proper catenary sag.

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

$\subset \subseteq \subseteq$ CONVEYOR DESIGN RECOMMENDATIONS

Entry Radius for Sliding Returns

⇒ Provide a generous entry radius to the return section which permits the chain to feed smoothly into the return ways

- ⇒ The entry radius should be greater than the minimum back-flex radius of the chain (see table below)
- ⇒ Rexnord recommends a 6 in (152 mm) minimum entry radius to prevent non-uniform wear
- ⇒ When returning a chain on its TABs, guide the chain onto the return wearstrips using a guide shoe (see table on page EM MF 15 for proper guide clearance)
- ⇒ At the entry of the return wearstrips, provide rounded corners to prevent catching or snagging of the chain flights

BACK-FLEX RADIUS TABLE

Chain State	Minimum Ba	ck-flex Radius
Chain Style	inches	mm
1700, AC 1700, 1701, 1701 TAB, AC 1701 TAB, 1702, 1755, 2500 TAB, 2550 TAB	1.50	38.1
1757 TAB, LBP 1757 TAB	4.00	101.6
1765	2.50	63.5

Multiflex Conveyor Design

- > Entry Radius for Sliding Returns
- > Back-flex Radius Table

Regulatory Information:

Rexnord, Rex, TableTop and MatTop are trademarks of Rexnord Industries, Inc.

All rights Reserved.

> Sprocket and Wearstrip Location

> Sprocket
 Location
 for Conventional
 Chains

CCC CONVEYOR DESIGN RECOMMENDATIONS

Sprocket and Wearstrip Location

The distance from the end of the wearstrip to the sprocket shaft centerline should equal dimension "C"; otherwise the wearstrip will interfere with the free articulation of the chain as it enters the sprocket.

- ⇒ The leading edges of the wearstrip should be beveled
- ⇒ The following formulas and dimensions used in conjunction with the figure will give the proper shaft and wearstrip positioning:
- Sprocket Location For Conventional Chains:
 - A = (Pitch Diameter/2) E
 - C = One Chain Pitch (See Table Below)

"C" equals one chain pitch which ensures support under chain at all times.

Example:

For a 1700 chain utilizing a 10T sprocket:

A = (Pitch Diameter/2) - E = (6.369 in/2) - 0.470 in = 2.715 in C = 1.97 in

Metric: A = (Pitch Diameter/2) - E = (161.77 mm/2) - 11.94 mm = 68.95 mm C = 50.0 mm

Tolerances

A = +0.03 in / -0.00 in (+0.8 mm / -0.0 mm) C = +0.25 in / -0.00 in (+6.3 mm / -0.0 mm)

SHAFT DROP VALUES

For Conventional Chains					
Chain	Chain	"C" Dimension		"E" Dimension	
Series	Numbers	inches	mm	inches	mm
1700	1700, AC1700	1.97	50.0	0.470	11.94
1701	1701	1.97	50.0	0.480	12.19
1701TAB	1701TAB, AC1701TAB	1.97	50.0	0.480	12.19
1702	1702	1.97	50.0	0.480	12.19
1755	1755	1.58	40.0	0.250	6.35
1765	1765	1.97	50.0	0.470	11.94
2500TAB	2500TAB	3.00	76.2	0.700	17.78
2550TAB	2550TAB	3.00	76.2	0.700	17.78
1757	1757TAB	1.50	38.1	0.940	23.88
LBP1757	LBP1757TAB	1.50	38.1	0.940	23.88

For 1757 chains, see page EM - TT - 26 (TableTop[®] section).

Contact Rexnord Application Engineering for more information 1.262.376.4800

Regulatory Information: Rexnord, Rex, TableTop

All rights Reserved.

and MatTop are trademarks of Rexnord Industries, Inc.